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Abstract. The Earth’s lower mantle and outer core are identified by seismology as regions that
are homogeneous in composition and mineral structure over wide pressure ranges. Variations
with pressure,P , of bulk modulus,K, density,ρ, and, for the lower mantle, rigidity modulus,µ,
are reported in seismic models with much greater resolution than is achieved over similar pressure
ranges by laboratory methods. These data are an under-utilized resource for high pressure equation-
of-state studies. The lower mantle data are particularly useful for two reasons: (1) the minerals
believed to be present can be obtained in metastable equilibrium at low pressure for laboratory
examination, (2) a linear relationship betweenµ,K andP allows extrapolation to infinite pressure,
giving a direct estimate ofK ′∞ ≡ (∂Ks)/∂P )s(P →∞) = 1.425(10). The core equation-of-state
is less well constrained, but two independent approaches giveK ′∞ = 3.0(2). Although not always
recognizedK ′∞ is a parameter of every equation-of-state, but none of the usual equations gives
values compatible with terrestrial data. A new approach is proposed, representingK ′ ≡ dK/dP as
a function ofP/K, since at infinite pressure(P/K)∞ = 1/K ′∞ and the endpoint of the equation-of-
state is precisely determined. Two equations that fit all of the observations are suggested. This use
of K ′∞ is particularly relevant to estimates of thermodynamic properties at high pressure because
it constrains the dimensionless derivativesK ′ andKK ′′ on which these estimates depend.

1. Introduction

High pressure mineral physics is now placing increasingly stringent demands on equations-
of-state for the Earth’s deep interior. Identification of plausible compositions by extrapolation
of P–ρ relationships is still of interest, but is not very demanding of the equations-of-state
that are assumed and, as a consequence, provides a poor test of their validity. Attention is
turning to higher derivative properties,K ′ = dK/dP andK ′′ = d2K/dP 2, which are needed
for the estimation of thermal properties. Among these the temperature dependences of elastic
moduli are of particular current interest in connection with small lateral variations in seismic
velocities that are seen to be superimposed on the strong pressure-driven radial variations.
Standard finite strain theory, which to most geophysicists means the theory due primarily
to Birch [1], is inadequate for the task. While some other empirical relationships may fare
somewhat better, the present study is motivated by the need for a new approach that makes
more effective use of existing data.

Rigidity modulus,µ, generally receives little attention in equation-of-state studies. In
many situations it is more difficult to measure at high pressure than is bulk modulus,K
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(usually termed incompressibility in geophysical literature), and it does not appear in the
thermodynamic identities that linkK to other thermoelastic properties. In seismologyµ is
as well observed as isK, and it is more sensitive to effects such as thermal anomalies and
especially partial melting, but, although there have been attempts to incorporate it in finite
strain theory, it has had only a minor role in equation-of-state studies. The following section
draws attention to a new use of rigidity data in the determination ofK ′∞. This is a parameter of
every finite strain theory, but has not been considered experimentally accessible and is rarely
even mentioned. Keane [2] recognized its significance and proposed a finite strain equation
that incorporated it, but only as a parameter to be fitted to compression data. Elsasser [3]
and, more recently, Holzapfel [4] suggested that all finite strain theories should approach the
infinite pressure limitK ′∞ = 5/3, appropriate for an electron gas in the Thomas–Fermi limit,
but this is in conflict with observations on both the Earth’s lower mantle and core. Neither
Keane’s equation nor Holzapfel’s equation H12 (which he reports [5] ‘can fit all the available
data for individual low-or high-pressure phases of any element. . .) gives a satisfactory fit to
the Earth’s lower mantle.

In the Earth we are not dealing with single elements or, in the case of the mantle, even with
simple compounds but with composite materials. This requires a little care in the interpretation
of observed elastic moduli [6]. In fitting mineral elasticity data, I have found that the Hill
average [7] of Voigt and Reuss limits is as good as any other averaging method [8]. The
procedure for averaging derivative properties is given by Stacey [9]. This requires recognition
that, when a composite is compressed, the least compressible component becomes an increasing
volume fraction of the whole. There is therefore a component of dK/dP additional to that due
to the intrinsic increase inK for each constituent. In the case of the lower mantle minerals the
values of dK/dP are all quite similar, but because the values ofK differ the composite dK/dP
is higher than for the individual minerals. This does not affect the lower mantle data directly,
but it is important to the zero pressure extrapolation, which is here constrained to the value
K ′0 = 4.21 [9] in fitting equations-of-state, this being derived from laboratory observations on
lower mantle minerals.

A proviso should be noted concerning the new equations that are presented here. They
are derived specifically for use with close-packed structures (which may include liquids where
rigidity is not considered) at high pressures, such that bond-angle rigidity is unimportant.
In this approximation atomic forces are effectively central. Bond angles may be distorted
away from their ‘preferred’ (low pressure) values to accommodate the close-packing and any
bond-angle rigidity becomes indistinguishable from central forces between the atoms that are
bonded. This approximation is found to be extremely well satisfied in the lower mantle. It
probably does not apply to the more open crystal structures of the upper mantle, but a rigorous
test is precluded by the limited pressure ranges of mineralogical homogeneity.

2. Theµ–K–P equation andK′∞

In a close-packed structure with central forces and nearest neighbour interactions dominating,
all elastic moduli must be explained as derivatives of the same bond potential,φ(r), as a function
of atomic spacingr. At arbitrary pressure,P ∝ −φ′/r2 and, by a second differentiation with
respect to volume,K ∝ (1/3)(φ′′/r − 2φ′/r2) where primes indicate differentiation with
respect tor. It follows that (K − 2/3P) ∝ φ′′. This is an example of what Falzone and
Stacey [10] called second order elasticity theory because to calculate strain energy at arbitrary
pressure in terms of changes in bond length,1r, these changes must be calculated to second
order in strain. Applying the same principle to shear [10] each of the shear moduli, and a
weighted average of them is also seen to be a linear function ofφ′′/r andφ′/r2 orφ′′/r andP .
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In this circumstance there is a linear relationship betweenµ,K, andP [11, pp 264–7]

µ = AK − BP (1)

where bothA andB are necessarily positive. This was first pointed out as an explanation for
the high Poisson’s ratio (0.445) of the Earth’s inner core [10] and subsequently [11] to indicate
thatµ/K → 0 asP → ∞ and that(P/K)∞ = 1/K ′∞. This is conveniently expressed [12]
by rewriting equation (1) to make the physical significance of the constantsA andB more
obvious

µ

K
=
(
µ

K

)
0

(1−K ′∞P/K). (2)

Fitting equation (2) to the lower mantle tabulation in PREM (preliminary reference
Earth model [13]) we obtain [11](µ/K)0 = 0.631(1) andK ′∞ = 1.425(10). This fit is
surprisingly good bearing in mind the uncertainties in PREM and the long extrapolation to
(µ/K) = 0. The reason is evidently that in PREM the P- and S-wave velocities and density are
all modelled as third order polynomials in radius over the lower mantle range, and although this
parametrization imposes a distortion on derivative properties such asK ′,µ andK are affected
by the parametrization in exactly the same way and their ratio is unaffected. The remarkable
result is that we have a more precise value ofK ′∞ than we have ofK ′ at any other pressure.

3. Fitting equations-of-state to the lower mantle

Two new equations constrained to the observedK ′∞ as well as toK ′0 = 4.21 [9] are discussed
below. Ten other equations have been tried for comparison, but without theK ′∞ constraint,
since only one of them meets this fitting criterion. Details of the fitting procedure are given in
[9]. The ‘successful’ equations are the Morse potential, the Rydberg potential, and the Birch
fourth order theory (third order theory in the nomenclature of Holzapfel [4], but fourth order
according to Birch [1] because Helmholtz free energy is written as a fourth order polynomial
in generalized strain). The finite strain equation derived from the Rydberg potential has
been strongly advocated by Vinetet al [14] and others [15] with no obvious reference to its
original derivation in 1932 [16] or subsequent use as an equation-of-state for solids (e.g., [17]).
Holzapfel’s equations [4, 5] were not included in the reported tests but his equation H12 has
since been added to the list of equations that are incompatible with homogeneity of the lower
mantle.

In view of the range of apparently quite different equations that fit the lower mantle equally
well (±0.15% in density over the pressure range 28.3–127 GPa), it is evident that such fitting
is no indication of an equation’s validity (although a misfit is evidence of invalidity). We
are dealing with alternative equations that all happen to have the correct form over the tested
range. However plotted, the curvature of an equation-of-state is slight and it is fairly easy to
find an empirical match to a data set, without a physical basis for it. But the curvature is subtly
different for each of the equations and the thermodynamic implications of higher derivative
properties,K ′ and especiallyK ′′, cannot be trusted without more information. This is where
theK ′∞ constraint becomes important. It exerts a fine control on the curvature of aP(ρ) or
K(ρ) equation, especially at the high pressure end of a tested pressure range. Values ofK ′∞ for
the three well-fitted equations are 2/3 for the Morse and Rydberg potentials and 11/3 for the
Birch equation, compared with 1.425 for the lower mantle itself. The curvature of the Birch
equation is very serious, for the other two less so, but the case for developing an equation that
matches the observedK ′∞ is strong.

In fitting higher derivative equations to the lower mantle tabulation of the Earth model
[13] we are effectively limited to a very restricted data set because the manner of model
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parametrization effectively imposes its own equation-of-state on the data. The result is
curvature of aK ′ versusP/K plot that is unphysical and simply a figment of the parametrization
[9]. However, there is little doubt that the averageK ′ over the lower mantle is reliable. Volume
averages for the lower mantle areK ′ = 3.369 atP/K = 0.1457. Then, with the two end
points,K ′0 = 4.21 atP/K = 0 andK ′∞ = 1.425 at(P/K)∞ = 0.702, it is apparent that
a graph ofK ′ versusP/K is only moderately curved and a quadratic equation is an obvious
first try

K ′ = K ′0 +K0K
′′
0
P

K
+

1

2
K2

0K
′′′
0

(
P

K

)2

(3)

where
1
2K

2
0K
′′′
0 = K ′3∞ −K ′0K ′2∞ −K0K

′′
0K
′
∞. (4)

We may suppose that equation (3) is the beginning of a convergent series but have
insufficient reliable data to evaluate higher coefficients. With the fixed end points and the
mean lower mantle values as the third constraint,K0K

′′
0 = −6.245, 1

2K
2
0K
′′′
0 = 3.243. Thus,

if equation (3) is taken to be the beginning of a series, it looks like the expansion of an
exponential

K ′ = K ′0 exp

(
K0K

′′
0

K ′0

P

K

)
(5)

where

K0K
′′
0 = K ′0K ′∞ ln(K ′∞/K

′
0) (6)

so that a more useful form of equation (5) is

K ′ = K ′0(K ′∞/K ′0)K
′
∞P/K. (7)

Equation (7) has the advantage of requiring one fewer fitted constant than does equation (3).
Indeed, it is specified entirely byK ′0 andK ′∞ without requiring a mantle value ofK ′, which
is, paradoxically, the least certain of the parameters used to fit equation (3).

Both equations (3) and (7) fit the lower mantle tabulations ofρ andK very well [9],
making a total of five equations that do so. In this circumstance the logical preference is for
equation (7). It matches the (K, ρ, P ) tabulation to±0.13% in ρ and 0.6% inK [9] over
the whole range, without requiring the problematic selection of a lower mantle value ofK ′,
and theK ′∞ fit ensures that higher derivatives, at least toK ′′, are reliable. Since the lower
mantle is believed to be close to adiabatic, the fitted equation-of-state is an adiabat, that is
K ≡ KS = ρ(∂P/∂ρ)S andK ′S ≡ (∂KS/∂P )S , whereS is entropy.

If equations (3), (5), or (7) have analytical solutions they have yet to be found, but numerical
treatment is straightforward and for integration in equal increments inP/K = x we can write

ln

(
ρ

ρ0

)
=
∫ x

0

dx

1− xK ′ (8)

ln

(
K

K0

)
=
∫ x

0

K ′ dx
1− xK ′ . (9)

Equations (8) and (9) are quite general. For the special case of equations (5) or (7) there
is a relationship between these integrals, giving

K

K0

(
ρ

ρ0

)b
= K ′

K ′0

/(
1−K ′ P

K

)
= KK ′′

K0K
′′
0

(10)

whereb = K0K
′′
0/K

′
0 as in equations (5) and (6).
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4. Thermal properties

Equation (7) givesK ′ directly in terms ofP/K. ρ/ρ0, K/K0 andKK ′′ are obtained from
equations (8), (9) and (10). The connection between these quantities and thermal properties is
made via the thermodynamic Grüneisen parameter

γ = αKT

ρCV
= αKS

ρCP
(11)

α being volume expansion coefficient andC is specific heat at either constant volume or
constant pressure. For many purposes (such as calculation of adiabatic temperature gradients)
knowledge ofγ suffices, but where specific values ofα are required they are obtained
from γ by equation (11) with the assumption thatCV is known, the temperature being
everywhere well above the Debye temperature. In the case of the silicate mantle this means
CV = 3R = 24.9 J K−1 mol−1 with a small anharmonic correction [18]. Thus virtually all
geophysical calculations of thermal properties have relied on one or other of the rival formulae
relatingγ to the pressure dependences of elastic moduli. There are two survivors from the
original wider field, the acoustic gamma and the modified free volume gamma. Numerically
they agree reasonably on the variation ofγ with depth in the lower mantle (table 1), but the
fact that there are still two different formulae with strong proponents is an admission that this
is not an unambiguously resolved problem.

Table 1. Grüneisen parameter in the Earth’s lower mantle: a comparison of two theories.

Radius Pressure Bulk modulus
(km) P (GPa) K (GPa) Acousticγ Modified FVγ

Zero pressure reference 0 203.2 1.355 1.366
5600 28.29 313.3 1.225 1.225
5200 46.49 380.3 1.181 1.161
4800 65.52 444.8 1.148 1.114
4400 85.43 508.5 1.119 1.078
4000 106.39 574.4 1.097 1.051
3630 126.97 641.2 1.080 1.031

The acousticγ derives from the original Grüneisen definition of a modeγ , γi =
−(∂ ln νi/∂ lnV )T for an identified lattice mode of frequencyνi by supposing that all modes
are either compressional or shear acoustic modes and that one simply sums theγi for the two
mode types in proportions 1/3 and 2/3, giving

γA = 1

6

K

K + 4
3µ

dK

dP
+

1

3

K + 2µ

K + 4
3µ

K

µ

dµ

dP
− 1

6
. (12)

This has seemed attractive because it appeals directly to the seismically observed
elasticities and so is immediately calculable from an Earth model. The lower mantleK ′

variation by equation (7) with correspondingµ by equation (2) gives the values in table 1.
Dispersion of mode frequencies is no problem because it is the logarithmic derivative that is
needed, but, apart from the neglect of optic modes, the assumption that all acoustic modes are
appropriately averaged by the two available moduli is not easy to assess. For many materials
equation (12) gives reasonable values, but doubt is raised by the fact that it gives a positiveγ

for a simple, central force harmonic lattice, for whichγ should be negative.
The free volumeγ does not appeal to the existence of modes, but can be derived by

considering the motions of individual atoms in the force fields of their neighbours. It takes its
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name from a derivation by free volume theory [19] but has been derived by two other quite
different methods [20, 21]

γFV =
1
2

dK
dP − 5

6 + 2
9
P
K

1− 4
3
P
K

. (13)

The coincidence of three derivations appeared persuasive, but a molecular dynamical
calculation [22] revealed a flaw. All of the derivations assumed either explicitly or implicitly
that the thermal motions of neighbouring atoms were uncorrelated, but this is not what
is observed. Motions of neighbours are positively correlated, more so for motion in the
direction of the bond joining them than transversely. More recently a higher anharmonic (high
temperature) correction factor,h, has been added [18], resulting in what I now refer to as the
modified free volumeγ

γMFV = h
1
2

dK
dP − 1

6 − f

3

(
1− 1

3
P
K

)
1− 2

3f
P
K

(14)

where

h = 1 +
m

2
(K ′ − 1)

1ρ

ρ
. (15)

Herem is a numerical factor depending on the differing atomic masses (unity for a
monatomic lattice but about 1.45 for lower mantle minerals) and(−1ρ/ρ) is the total thermal
dilation at the specified pressure. For this purpose the expansion coefficient is obtained from
γ itself by equation (11) but assumed to vary with temperature in the manner of a Debye
function. At P = 0 the effective Debye temperature isθD ≈ 950 K and the potential
temperatureT ' 1725 K [9] with T/θD taken as constant over the adiabatic temperature
profile. The factorf in equation (14) accounts for the correlations in atomic motion. If the
correlation in instantaneous (thermal) displacements of a pair of neighbouring atoms from
their equilibrium positions were the same for motions in the direction of the bond joining them
and transversely to it, thenf would be 2. This corresponds toγFV (equation (13)). But the
transverse correlation is always smaller andf > 2 (see [12]).f is not an absolute constant,
but for monatomic latticesf ≈ 2.35 and for typical mineralsf ' 2.27. For a hypothetical
harmonic lattice (K ′0 = 1), equation (14) gives negativeγ0, as expected (γ0 ≈ −0.45). Partly
for this reason I favour the use of equation (14) rather than equation (12).

Given a functionK ′(P/K) carefully matched to seismic observations (equation (7)) and
γ (K ′, P/K) by equation (14) one can immediately calculate two other thermal parameters,
α andq = (∂ ln γ /∂ ln ρ)T . Then using a thermodynamic identity we obtain the temperature
dependence ofKS

− 1

αKS

(
∂KS

∂T

)
P

≡ δS = K ′S − 1− γ + q − (∂ lnCV /∂ lnV )S (16)

where the last term is neglected at deep earth temperatures. (This is particularly easy to justify
for an adiabatic variation ofCV because the variation of Debye temperature,θ , is similar to
the adiabatic variation of temperature, that isT/θ is almost constant and the material stays at
almost the same point on the characteristic Debye curve.) Geophysical applications of these
parameters are discussed elsewhere (e.g., [9, 11]) but the principles are general and apply to
any high pressure situation.

In geophysics the adiabatic bulk modulusKS and its pressure and temperature derivatives
are emphasized. This is inevitable because seismic waves involve adiabatic compressions and
because temperature gradients in the Earth are believed to be close to adiabatic, being controlled
by convection. Corresponding isothermal properties that are generally considered in theoretical
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studies can be quite different, notablyδT = −1/(αKT )(∂KT /∂T )P = (∂ ln α/∂ lnV )T is
much bigger thanδS (equation (16)) (by a factor exceeding 1.5 in the lower mantle) and care
is required not to confuse them. Compact summaries of identities that relate these parameters
in a notation convenient for geophysical applications are given in [11], appendix E, for first
derivative identities and [12] for an extension to second derivatives.

5. Liquid iron and the Earth’s core

An equation-of-state for the Earth’s core is necessarily less precise than for the lower mantle,
but nevertheless some useful general conclusions emerge. The limitations arise from two
difficulties (1) Most of the core (the outer core) is liquid, precluding application of equation (2).
The solid inner core is small and although a reliable average value ofµ is obtained, shear
waves are not directly observed and dµ/dP cannot be taken directly from seismology [12].
(2) Assuming the validity of the available data, laboratory liquid iron, or alloys, and the
liquid outer core cannot be fitted to a commonK(P ) relationship, apparently because in the
intervening pressure range there are structural changes in the liquid corresponding to phase
transitions in solid iron.

The second point may be seen by comparing zero pressure parameters for laboratory liquid
iron at its melting point [23],K0 = 109.7± 0.7 GPa,K ′0 = 4.661± 0.040, with values at
the top of the outer core (P = 135.75 GPa),K = 644.1 GPa,K ′ = 3.58. If we assume
that (∂(∂KS/∂P )S)/∂T )P ≈ 0, as for deep mantle silicates [18], then we may integrate either
equation (5), equation (3) neglecting the final term or any similar equation to estimateK/K0

and, by assuming the core value ofK, obtainK0 = 119 to 122 GPa depending on which
equation is assumed to apply. In all casesK0 is much greater than for laboratory liquid iron,
whereas the calculated value should be much less since it corresponds to a higher temperature,
that is the foot of the core adiabat. In principle the disagreement could be avoided by assuming
thatK ′0 is more strongly temperature dependent than appears reasonable. There is no other
evidence for this, so the equation-of-state for the core cannot be extrapolated reliably to zero
pressure laboratory iron. This means that the constraints on it are much weaker than in the
case of the lower mantle.

Nevertheless we can restrict the value ofK ′∞ for the core to a very limited range by
two independent arguments because the extrapolation is a much smaller one than in the
case of the lower mantle. Assuming the laboratory value ofK ′0, and fitting equation (5)
to the core data givesK ′∞ = 3.12. Alternatively if we appeal to the inner core value of
µ/K = 0.12 atP/K = 0.25, then any reasonable value of(µ/K)0, say(µ/K)0 = 0.6, gives
(P/K)∞ ≈ 0.3125 at(µ/K) = 0 and thereforeK ′∞ = 1/(P/K)∞ = 3.2. In both cases
there is little scope for uncertainty because the extrapolation is very short, but if the effect of
anelasticity onµ is allowed for,K ′∞ for the core may be as low as 2.8 [18]. Thus we can put
K ′∞ = 3.0± 0.2 with some confidence. It is certainly quite different from the lower mantle
value and from the Elsasser–Holzapfel limit (5/3) based on Thomas–Fermi theory.

6. Conclusions

Recognition thatK ′∞ offers the possibility of a powerful constraint on high pressure equations-
of-state has a long history [2–5, 11, 12] but a method of obtaining realistic values is recent
[9, 11, 12]. It has little value as a parameter to be constrained byP −ρ data-fitting [2] and there
is no justification for the supposition [3–5] that it should approach the free-electron (Thomas–
Fermi) limit of 5/3. The two terrestrial materials for which seismological observations provide
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measured values (lower mantle silicate,K ′∞ = 1.425±0.010, and core alloy,K ′∞ = 3.0±0.2)
are clearly very different and disallow the supposition that is made explicit in some theories
[3–5] and is implicit in many others [1, 14, 15, 17] thatK ′∞ is a universal constant. Indeed it
may be a physically meaningful parameter only for close-packed materials at high pressure,
such as those considered here. In any case, we cannot suppose that it necessarily has the same
value for different phases or crystallographic structures of the same material. In spite of being
metallic, iron at 130–360 GPa (the Earth’s core) is not at all like the free-electron gas that it is
presumed to convert to in the Thomas–Fermi limit of extreme compression. It is a completely
different phase and its equation-of-state does not extrapolate to that limit.K ′∞ is a parameter
describing the behaviour of a material in its observed state and cannot be carried through the
phase transitions that it would undergo on the way to the infinite pressure limit.

The most important reason for wanting to knowK ′∞ is that it provides a close control on
the curvature of a plot ofK ′ versusP/K and therefore on the thermodynamic parameters that
can be inferred from such a plot. In the case of the Earth it is obvious that these parameters are
not obtainable in any other way. The relationships outlined in section 4 are used in studying the
thermodynamics of the Earth [9, 11, 12, 24], but are general and can be used for any material
for which the equation-of-state is sufficiently well defined.

The essential significance ofK ′∞ is that it is the reciprocal of(P/K)P→∞, so that a graph
of K ′ versusP/K has a fixed end point corresponding to the infinite pressure extrapolation.
Of course observations ofK ′ are more difficult and uncertain than variations inρ orK with P ,
but if they can be obtained they define an equation-of-state much better. It is very convenient
that, as in the case of the deep Earth,K ′∞ itself can be obtained without any observations of
K ′ if rigidity, µ, can be measured and fitted to equation (2). It may not be easy to achieve this
in laboratory measurements with the precision of seismological observations of the Earth’s
interior but the reward will be much better equations-of-state constraints than are generally
obtained.
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